
JOURNAL OF APPROXIMATION THEORY 18, 50-56 (1976)

Limits of Generalized Polynomials with

Nonnegative Coefficients

ROBERT WHITLEY

University of California at Irvine, Irvine, California 92664

Communicated by E. W. Cheney

Received October 18, 1974

INTRODUCTION

The starting point of this paper is a startling theorem, based on results
of S. N. Bernstein, and presented by Widder in [10, Theorem 9b]: If f on
[0, 1] is the uniform limit of polynomials with nonnegative real coefficients,
thenfis the restriction of a function analytic in the unit disk. We will consider
generalized polynomials in given real functions {In}, namely, finite sums
L anfn with non-negative real coefficients an , and will show that with some
conditions on the functions {In} we can obtain results similar to those in the
casefnCx) = xn• The generalization we obtain requires only simple conditions
on the functions {In}, and the Bernstein-Widder results follow directly. It
is surprising that this can be done rather easily.

DEFINITION. Let S be a topological space. We will consider a sequence
{In} of functions on S with the following properties.

1. There is a constant c with c ~f'l,,(s) ~ 1, for all s in Sand n =
0,1,2,....

2. There is a nonvoid subset F of S with empty interior, such that
fn{s) = 1 for each s in F and n = 0,1,2,....

3. For s not in F,fn{s) ~ 0.

A (generalized) polynomial in {In} with (real) coefficients {bj} has the
form L bnfn, where only for a finite number of n's the coefficient bn is
nonzero.

THEOREM 1. Let S be a topological space and {fn} a sequence offunctions
on S satisfying the conditions ofthe definition. Assume thatf, a real function on
S, is the pointwise limit of polynomials {Pn} in the functions {In} with non­
negative coefficients. Then:
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I. There is a convergent series ofpositive terms L an , with
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(*)

uniformly in S-F.

II. If, in addition, f is continuous in F, then (*) holds uniformly in S.
Moreover, there is a subsequence of{Pn}, which converges to f uniformly in S.

Proof We suppose thatfis the pointwise limit of a sequence {Pn}, where
each Pn has the form Pn(s) = L ajnjj(s), aon, a1

n, a2
n,... , a sequence of non­

negative numbers with only a finite number of nonzero terms. For s in F,
Pn(s) = L ajn --+ J(s), so there is a constant M with L ajn ~ M for n = 0,
1,2,.... The sequences X n = (ao

n, a1
n, a2

n,... ), as elements of the Banach
space II, are uniformly bounded in norm. Regarding II as the conjugate of the
space Co there is a subsequence converging to (ao , a1 , a2 , ...) in the weak*
topology. For simplicity we will also call this subsequence {(aon, a1

n,...)}.
For s not in F, {fn(s)} belongs to co, so L a/'fj(s) --+ L adj(s); thus J(s) =
L ajjj(s). We remark that L aj ~ M; consequently the convergence of
L:; ajjj(s) to J(s) is uniform.

So far very few properties of the functions {fn} have been used. It would
have sufficed to have the sequence uniformly bounded in absolute value,
fn(s) --+ °for s not in F, and fn(so) ~ a > 0, n = 0, I, 2, ... , for some So in F.

Now suppose thatfis continuous at a point s in F. Given this sand E > 0,
there is a point t in S-F with IJ(s) - J(t)1 < E. First,

L aj ~ Lalit) = J(t) ~ J(s) - E.

Second, given k, for large m,

k k

E +J(s) ~ Pm(s) = L ar ~ L ar --+ L aj;
o 0

as this holds for all k, J(s) ~ L aj. Hence J(s) = L aj' We will now show
that the (subsequence) {Pn} converges uniformly to f Given E > 0, choose k
with L~ aj ~ L: aj - E. Then choose n so large that I a/ - aj [ < E/(k + 1)
for °~j ~ k; it follows that :L~ ajn ~:L: aj - 2E. Because :L ajn--+
L aj , L~+l ajn < 3E for large n. Hence, for any s in S,

[PnCs) - J(s)1 ~ L [ a/ - aj [

k '" '"
~ L [ ajn - aj I + L ajn + L aj

o k+l k+l

for n large. Q.E.D.
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Note that in the second part of the proof we establish the result that a
sequence {xn} in II which converges in the co-topology to x with {II X n II}
converging to II x [I must converge to x in norm. Also, for S compact, if we
take {In} and f to be in the Banach space CCS), then Theorem 1 shows that
when {Pn}, a sequence from the positive cone spanned by {In}, converges
weakly toJ, a subsequence must converge in norm.

In passing, note that some extra condition on f is necessary in Part II of
Theorem 1. Consider S = [0, 1], F = {I}, fn(x) = xn, n = 0, 1,2,.... Let
g(x) = L: (l/2n) xn, Qm(x) = L:; (l/2n) x n. Then define f(x) = g(x), °~
x < 1, and f(l) = g(l) + 1; also Pn(x) = Qn(x) + xn. We have Pn(x)-+
f(x) on [0, 1], butf(x) = L:: (l/2n) xn holds only on [0, 1).

THEOREM 2. (Bernstein [1, Sect. IV]; Widder [10, Chap. IV]. Let f be
afunction continuous on [0, 1]. Thefollowing are equivalent.

(i) The function f is C/O with rex) ~ °for °< x < 1, k = 0, 1,2,....

(ii) The kth difference Jhkf(x) is nonnegative for k = 0, 1,2,... , and all
positive h.

(iii) The function f is a pointwise limit ofpolynomials with nonnegative
coefficients.

(iv) There is a convergent series, Lan ofnonnegative terms withf(x) =

L anxn holding uniformly on [0, 1].

Proof We show that (i) implies (ii). Recall that the differences off with
increment h are defined by JhOf(x) = f(x); Jh1f(x) = f(x + h) - f(x),°~ x ~ x + h ~ 1; J~+lf(x) = Jh1Jhkf(x) = f(x + kh) - (D f(x + (k ­
1) h) + ... + (-l)k f(x), °~ x ~ x + kh ~ 1. By repeated applications of
the mean value theorem we see that Jhkf(x) = r(c) hk with °< c < 1.

We show that (ii) implies (iii). For f continuous on [0, 1], the Bernstein
polynomial

converges uniformly to f on [0, 1] [3,8,9]. Following [8, pp. 12-13] or
[10, p. 155], it is easy to see that

B(x) = f (~) J~/nf(O) x k
•

k=O

Thus f is the (uniform) limit of polynomials with nonnegative coefficients.
That (iii) implies (iv) is an immediate consequence of Theorem 1; (i) follows

from (iv). Q.E.D.
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A simple change of variable establishes the result for the interval [a, b],
with f(x) = L bnCx - a)n, f being the pointwise limit of polynomials in
powers of x - a with nonnegative coefficients. (Note that S = [a, b],
fn(x) = ((x - a)/(b - a»n satisfies the hypotheses of Theorem 1.) We can
conclude that f is the restriction of a function analytic in a circle of radius
b - a centered at a. For example if L1 h k f(x) ;?: °for x in [0, 00), k = 0,
1,2, ... , h > 0, then for S = [0, m],Jis the restriction of a function analytic
in a circle of radius m centered at 0. Hence f is the restriction to [0, 00) of an
entire function.

Let Sn be a topological space and {it} a sequence of functions on Sn
satisfying the conditions of the definition, and in addition suppose that the
functions {f,/},j, n = 0, 1,2,... , are uniformly bounded below. Define g on
IISn by gjn(so , SI , ...) = ft(sn), and let {gn} be some indexing of the collection
of all finite products of the functions gt. Then IISn , {gn} also satisfy the
conditions of the definition. A special case of this, on S = [0, 1] X [0, 1], is
to let gn(x, y) be some indexing of the functions xnym, n, m = 0, 1,2,....
With the aid of Theorem 1 we can easily generalize Theorem 2 to two (or
several) variables.

THEOREM 3. Let f be continuous on [0, 1] X [0, 1]. The following are
equivalent.

(i) The function f has continuous, mixed partial derivative ofall orders,
with (8n+mj8xn8ym) f(x, y) ;?: °on (0, 1) X (0, 1).

(ii) The differences (L1",)~ (L1 y );:' f(x, y) are nonnegative for n, m =
1 2

0, 1, 2, ... , hI > 0, h2 > 0.

(iii) The function f is °pointwise limit ofpolynomials in the two variables
x and y with nonnegative coefficients.

(iv) There is a convergent series LL 0nm of nonnegative terms with
f(x, y) = LL onmxnym holding uniformly on [0, 1] X [0, 1].

Proof The proof parallels the proof of Theorem 1. We need the following
information.

The partial differences off are determined as for one variable:

L1 hlf(x, y) = f(x + h, y) - f(x, y),
x
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and similarly for the y differences. Also, if/has continuous partials of orders
less than or equal to n + m, then it can be shown inductively that

where °< C1 < 1 and °< C2 < 1.
The Bernstein polynomials

converge uniformly to / on [0, 1] X [0, 1] [9, p. 10]. Exactly as for one
variable, in fact using those results, we obtain

For more about these matters see [2,7].
This is all we need to do the proof. Q.E.D.

A couple of examples of the failure of the conclusions of Theorem 1 to
hold will be instructive.

EXAMPLE 1. On [0, 1), define /n(x) = (l - x) xn, n = 0, 1,2,.... The
function f(x) = 1 is the pointwise limit ofI:/n(x). We cannot have f(x) =

L anfn(x), with I an a convergent series of nonnegative terms, for

shows that aj = l,j = 0,1,2,....

EXAMPLE 2. On (0, 2TT),fn(X) = sin nx, n = 1,2,.... The function g(x) =
(TT - x)/2 is the pointwise limit of the partial sums I: (lin) sin (nx) of its
Fourier series. We cannot have g(x) = I an sin(nx) with L: an a convergent
series of nonnegative terms, for then 11m = (lITT) f~" g(x) sin(mx) dx = am
and L: am diverges.

It is easy to construct examples of functions satisfying the conditions of the
definition and for which the conclusions of Theorem 1 are interesting; for
example, fn(x) = sech(nx), S = (-<X), (0), F = {O};fnCx, y) = (x + y)n,
S = {(x, y): x;:::::: 0, y ;:::::: 0, x + y :s; I}, F the hypotenuse of the boundary
of S. However, stronger examples can be obtained from eigenvalue problems
for ordinary and partial differential equations, where expanding a function in
a series of eigenfunctions is a classical problem of great interest.
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EXAMPLE 3. On S' = C-1, 1], let PnCx) be the nth Legendre polynomial.
Recall that -1 ~ PnCx) ~ 1, and Pn(1) = 1. Using the Laplace integral
representation for PnCx) [5, p. 58],

Pix) = (l/7T)r [x + i(l - x2)l/2(COS t)]n dt
-Tf

and the inequality I x + i(l - x2)l/2 cos t I < 1 for -1 < x < 1 and °<
t < 7T, we see that Pix) ---+°for -1 < x < 1. (Note that PnC-1) = C_1)n,
so for the sequence {P2n} we could take S = [-1, 1] and F = {-I, I}.)

EXAMPLE 4. In solving a problem of the diffusion of heat in an infinite
cylinder we find that we must expand the solution u(r, t) in a series of the
functions In(r, t) = JoCAnr) exp(-a2"Ant), as well as expanding a given func­
tion, representing an initial heat distribution, in a series of the functions
JoCAnr). Here Jo is the Bessel function of order 0, r is the distance from the
axis of the cylinder, t is the time, An are the positive roots of JoCAC) = 0, C is
the radius of the cylinder, and a2 is the thermal conductivity of the cylinder.
We take S = [0, c] X [0, 00). To see that the conditions of the definition are
satisfied for the functions InCr, t) we need to know that An ---+ 00,
-1 ~ JoCx) ~ 1, JoCO) = 1, and that Jo(x) ---+ °as x ---+ 00; see [4, Chap. VIII].
We remark that the functions Jo(Anr) on [0, c] and exp(-a2Ant) on [0, 00)
satisfy the conditions of the definition, so the product, as we remarked
following theorem 1, satisfies the conditions on the product space.

There is an interesting point to be brought out here. For certain eigenvalue
problems we have the strong results of Theorem 1 holding, results which
for analytic Un} yield Cor require) analyticity of the expanded function, while
this is not the case for other problems. It would be enlightening if this could
be explained in terms of the physics of the underlying physical problem and,
conversely, if the conclusions of Theorem I could be interpreted in a physical
manner.
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